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Abstract. Canard orbits are relevant objects in slow-fast dynamical systems

that organize the spiraling of orbits nearby. In three-dimensional vector fields
with two slow and one fast variables, canard orbits arise from the intersection

between an attracting and a repelling two-dimensional slow manifold. Special

points called folded nodes generate such intersections: in a suitable transverse
two-dimensional section Σ, the attracting and repelling slow manifolds are

counter-rotating spirals that intersect in a finite number of points. We present
an implementation of Lin’s method that is able to detect all of these inter-

section points and, hence, all of the canard orbits arising from a folded node.

With a boundary-value-problem setup we compute orbit segments on each slow
manifold up to Σ, where we require that the corresponding end points in Σ

lie in a one-dimensional subspace known as the Lin space Z. The Lin space

Z must be transverse to the slow manifolds and it remains fixed during the
detection of canard orbits as zeros of the signed distance along Z. During the

computation, a tangency of Z with one of the intersection curves in Σ may

arise. To overcome this, we update the Lin space at an intermediate continu-
ation step to detect a double tangency of Z to both curves in Σ, after which

the canard detection is able to continue. Our method is demonstrated with

the examples of the normal form for a folded node and of the Koper model.

1. Introduction. Slow-fast systems arise as mathematical models in various ap-
plications and they describe physical phenomena, such as chemical reactions, non-
harmonic oscillations, spiking and bursting [8, 21, 29, 30, 34, 42, 44, 51]; their study
has been an active area of research. All the natural questions from classic dynami-
cal systems theory about the local and global configuration of phase space are valid
for slow-fast systems, yet the existence of different time scales gives rise to new
questions in the slow-fast context. In particular, such systems are known to exhibit
mixed-mode oscillations, which are orbits of a vector field characterized by an alter-
nation of both small and large-amplitude oscillations. Mixed-mode oscillations were
first discovered in the Belousov-Zhabotinskii reaction [28, 50], and since then have
been found in a broad range of chemical and biological systems [9, 14, 19, 47, 53].

Solutions of slow-fast systems can be thought of as concatenations of slow motion
and fast segments, where the fast segments are described by a layer problem and
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the slow motion is organized by slow manifolds [15, 16, 31, 41]. These are locally
invariant manifolds that, together with equilibria, periodic orbits and their corre-
sponding invariant manifolds, organize the dynamics and the slow-fast nature of the
system globally. The existence of slow manifolds as perturbations of the so-called
critical manifold, formed by the intersection of the nullclines of the fast variables,
is guaranteed by Fenichel theory [15, 16, 31], provided that a condition known as
normal hyperbolicity is satisfied. We are particularly interested in three-dimensional
slow-fast systems with two slow and one fast variables. In this setup, the critical
manifold is a two-dimensional surface. Therefore, the corresponding slow manifolds
are two-dimensional surfaces in the three-dimensional phase space that can be either
attracting or repelling under the dynamics; determining their geometry in R3 may
be quite challenging. Two slow manifolds of different types may interact with each
other. Generically, in our setup with two slow and one fast variables, intersections
of an attracting slow manifold with a repelling slow manifold are structurally stable
and give rise to canard orbits. These are orbits associated with trajectories of the
slow flow that connect an attracting and a repelling sheet of the critical manifold
by crossing through fold curves. Canard orbits have the unusual property that they
follow a repelling slow manifold for a considerable amount of time [5, 22, 52]; as
such, they are global objects that are responsible for the creation and/or organiza-
tion of complex dynamics. The literature about canard orbits in R3 is extensive;
see for instance [2, 5, 12, 23, 39, 40, 52, 54]. Note that canard orbits cannot be
found analytically and must be computed numerically, which explains the keen in-
terest in detecting them. While they may arise more widely, canard orbits in R3

are closely related with folded singularities, which are singularities of the slow flow
that are located on fold curves of the critical manifold. In particular, a folded node
generates canard orbits, the number of which is determined by the eigenvalues of
the folded node [52, 54]. Such canard orbits organize small-amplitude oscillations
of mixed-mode oscillations in many applied models [4, 6, 11, 49, 55]. Therefore,
systems with folded nodes provide ideal and relevant test-case examples.

The use of advanced numerical techniques has been very successful for the com-
putation and visualization of slow manifolds [17, 24, 25, 36, 37]. However, these
methods do not allow for the detection of canard orbits straight away; in particular,
it is generally not possible to find canard orbits by integrating a single orbit segment,
because canard orbits are unstable objects in both forward and backward time. Up
to now, the visualization of slow manifolds has been used for the approximate de-
tection of canard orbits arising from folded nodes. This is done with a shooting
approach by integration in forward or backward time, up to a suitable cross section,
of initial conditions on curves that lie far from the fold on the critical manifold. The
intersection points of the two intersection curves of the attracting and repelling slow
manifolds are then found in the cross section by inspection. When this computation
is performed with a continuation and boundary-value-problem setup, a correction
step can be used to find canard orbits accurately [7, 8]. However, this approach
is ad-hoc in that each intersection point must be found by inspection and then
corrected individually. This makes the detection of all canard orbits, for example,
arising from a given folded singularity, cumbersome and time consuming.

In this paper we present an approach for the systematic detection of canard
orbits as intersection curves of two-dimensional slow manifolds. We stress that this
automatic detection step is the crucial first step. Once they are detected, canard
orbits can then be continued in system parameters to study their properties and
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bifurcations; see, for example, [5, 7, 8, 9, 11, 19, 23, 34, 54]. We focus here on
slow-fast systems where the canard orbits are generated by a folded node. More
specifically, our method is able to detect in a systematic and automated fashion all
of the canard orbits that (are know to) exist. It is based on the continuation of orbit
segments that are solutions of two-point boundary value problems (2PBVP); these
are solved with the package AUTO [10], which uses collocation in combination with
pseudo-arclength continuation where the size of the continuation step is determined
by considering the change along the entire orbit segment instead of merely the
initial condition. This computational setup is able to cope very well with sensitive
systems such as slow-fast systems [13]. Specifically, we simultaneously compute
and continue two orbit segments — one on the attracting slow manifold and one on
the repelling slow manifold — up to a section Σ through the folded node. These
two orbit segments are coupled by requiring that their end points lie along a fixed
direction. This Lin’s method approach [38, 43, 46] is a way of defining a suitable
test function that can be monitored: its zeros indicate that a canard orbit has been
found; see already Fig. 1. Any or all of the canard orbits that are found in this way
can then be continued in systems parameters in a straightforward manner: either as
two orbit segments while keeping the test function at zero, or by first concatenating
the two orbit segments to a single orbit segment. Such subsequent computations
are beyond the scope of this paper; see [7, 8, 9, 26] for examples and more details.

Lin’s method was developed as an analytic technique for finding periodic or aperi-
odic solutions near heteroclinic or homoclinic cycles [27, 32, 43, 48, 56]. It considers
one or several suitable sections transverse to the flow, and defines algebraic bifurca-
tion equations from orbits with gaps in lower-dimensional subspaces. Simultaneous
zeros of the gaps correspond to the global objects sought. Lin’s method has been
implemented also as a numerical technique for finding heteroclinic and homoclinic
connections; see for instance [18, 33, 38, 46]. More recently, the approach has been
successfully applied in the slow-fast context; specifically, for detecting so-called
connecting canard orbits arising as codimension-zero intersections between the two-
dimensional unstable manifold of a saddle-focus equilibrium and a two-dimensional
repelling slow manifold in a model with a singular Hopf bifurcation [45]. Here, we
follow a similar approach to compute canard orbits, which are codimension-zero
objects since they are structurally stable in R3.

Lin’s method requires the genericity condition that the Lin space is transverse to
both the attracting and repelling slow manifolds; this is not a problem locally near
the intersection point. However, finding all the canard orbits arising from a folded
node is more of a global problem. As we show, tangencies of the Lin space with the
intersection curves of the slow manifolds in Σ do occur and create a problem for the
detection of all the intersection points; this is due to the counter-rotating nature
of attracting and repelling slow manifolds near a folded node. In our approach, we
detect these tangencies and, through an intermediate adjustment step, we update
the Lin space in a suitable way. This allows the systematic detection of all the
canard orbits arising from a folded node singularity in a sequence of continuation
steps.

This paper is organized as follows. Section 2 gives the necessary background on
slow-fast systems and canard orbits. Section 3 describes the general numerical setup
for the computation of slow manifolds and the implementation of Lin’s method.
Section 4 shows our approach implemented for a normal form of a folded node; here
we use the symmetry of the system to define the Lin space Z. Section 5 describes the
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situation for Z in general position, when during the detection of canard orbits one
encounters tangencies of Z with the intersection curves of the slow manifolds with
the section. In section 6 we present our overall method that deals with tangencies
and allows for the systematic detection of all canard orbits. Section 7 demonstrates
our approach with the Koper model for idealized chemical reactions. We end with
a discussion in section 8.

2. Background: Fenichel theory and canard orbits in R3. We now present
some background on slow-fast systems in R3 with two slow and one fast variables,
as needed for this paper. For further details, we refer the interested reader to, for
example, [1, 9, 15, 16, 31, 41].

We consider a slow-fast vector field of the form εẋ = f(x, y, z, λ),
ẏ = g1(x, y, z, λ),
ż = g2(x, y, z, λ),

(1)

where f , g1 and g2 are smooth functions and λ ∈ Rk is a vector of parameters. Here,
0 < ε� 1 represents the ratio of time scales, so that the variable x ∈ R is fast and
the variables y, z ∈ R are slow. (In this paper we only encounter the case that f , g1

and g2 do not depend on ε.) Solutions of slow-fast systems can be thought of as a
concatenation of slow motion with fast segments. Considering system (1) for ε = 0
gives the slow flow or reduced system 0 = f(x, y, z, λ),

ẏ = g1(x, y, z, λ),
ż = g2(x, y, z, λ),

(2)

for the limiting slow motion. It is a differential-algebraic equation (DAE) where the
constraint on the first equation defines the critical manifold

S := {(x, y, z) ∈ R3 : f(x, y, z, λ) = 0},
which is the nullcline of the fast variable x. The dot in system (1) represents
differentiation with respect to time on the slow time scale τ . One can rewrite
system (1) with respect to the fast time scale t via a time rescaling by 1/ε to obtain x′ = f(x, y, z, λ),

y′ = εg1(x, y, z, λ),
z′ = εg2(x, y, z, λ),

(3)

where the prime denotes the derivative with respect to time on the fast time scale.
Fast segments of solutions of (1) are approximated by solutions of the layer equations x′ = f(x, y, z, λ),

y′ = 0,
z′ = 0,

(4)

which is a family of differential equations on the fast time scale, obtained as the
singular limit of (3) for ε = 0. Here the x′-equation depends on y and z, which
are now treated as parameters. Note that the critical manifold S is a manifold of
equilibria for the fast subsystem.

The properties of the critical manifold S come from the fast subsystem. Accord-
ingly, we say that a subset N ⊂ S is normally hyperbolic if all its points are hyper-
bolic equilibria of the fast subsystem x′ = f(x, y, z, λ). In other words, N ⊂ S is
normally hyperbolic if, for all points (px, py, pz) ∈ N , the JacobianDxf(px, py, pz, λ)
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has no eigenvalues with zero real part. Since system (1) has a single fast variable, the
normal hyperbolicity is reduced to fx(px, py, pz, λ) 6= 0; hence, system (4) implies
that the critical manifold S may have parts that are either attracting or repelling.
More precisely, the attracting sheet is

Sa := S ∩ {fx(x, y, z, λ) < 0},

and the repelling sheet is

Sr := S ∩ {fx(x, y, z, λ) > 0}.

The sheets Sa and Sr of S may meet at fold curves that are defined by

F := S ∩ {fx(x, y, z, λ) = 0}.

Note that normal hyperbolicity of S occurs away from the set F .
The fast dynamics of (1) is well understood by analyzing system (4); its solutions

are one-dimensional fast fibers that are attracted to or repelled from S. On the
other hand, the slow dynamics deserves a more detailed analysis. Since the reduced
system (2) is restricted to its critical manifold, one can use the normal hyperbolicity
of S away from fold curves and apply the Implicit Function Theorem to describe S
locally as a graph x = φ(y, z) and, thus, obtain a two-dimensional system projected
onto the plane of slow variables{

ẏ = g1(φ(y, z), y, z, λ),
ż = g2(φ(y, z), y, z, λ).

(5)

Unfortunately, S is not a graph over the slow variables near F . Alternatively, to
study the dynamics on S, one can choose, say, x and z as the defining variables,
and use the constraint f = 0 and the equations for ẏ and ż in (2) to obtain the
system {

−fxẋ = fyg1 + fzg2,
ż = g2.

(6)

Here, the functions g1, g2, fx, fy, and fz all depend on the point (x, y, z) and the
parameter λ, and (x, y, z) ∈ S, that is, f(x, y, z, λ) = 0. This formulation is valid
everywhere on S, although the system is singular at fold curves. System (6) can be
desingularized by rescaling time by the factor −1/fx. This way, one obtains{

ẋ = fyg1 + fzg2,
ż = −fxg2,

(7)

which allows the extension of (6) to fold curves. Note that in system (7) the flow
on the repelling sheet Sr is reversed. Generically along a fold curve, trajectories
of (2) approach F in either forward or backward time on both the attracting and
repelling sheets Sa and Sr of S. Singularities of the desingularized system (7) lie
on F and are known as folded singularities. At such points trajectories of the slow
flow (2) pass from Sa to Sr. A point q = (qx, qy, qz) ∈ F is a folded singularity if

fy(qx, qy, qz, λ) g1(qx, qy, qz, λ) + fz(qx, qy, qz, λ) g2(qx, qy, qz, λ) = 0. (8)

The stability of a folded singularity q comes from the analysis of q as a singular-
ity of (7). Let λ1 and λ2 denote the eigenvalues of the Jacobian matrix of the
desingularized system (7) at q. We call q

• a folded saddle, if λ1λ2 < 0 and λ1, λ2 ∈ R.
• a folded node, if λ1λ2 > 0 and λ1, λ2 ∈ R.
• a folded focus, if λ1, λ2 ∈ C with Im(λ1,2) 6= 0; in this case λ1 = λ2.
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Note that folded singularities are typically not singularities of the full system (1),
and they are only defined for the desingularized system (7). In this paper we focus
on folded nodes, which are associated with the existence of a finite number of canard
orbits in the full system (1) for 0 < ε � 1; see [52, 54] for a detailed analysis of
folded singularities. These results allow us to determine the number of canard orbits
that exist in a particular system for specific parameter values, so that we can then
apply our method and test whether it computes them all.

For 0 < ε � 1, Fenichel Theory [15, 16] guarantees the existence of attracting
and repelling smooth slow manifolds Sa

ε and Sr
ε in the full system (1) that lie at

distance O(ε) away from Sa and Sr where S is normally hyperbolic, that is, away
from fold curves. Trajectories of system (1) with ε > 0 are attracted to Sa

ε and
repelled from Sr

ε in forward time at fast exponential rates; trajectories that lie
on a slow manifold remain slow for an O(1) time on the slow time scale. Slow
manifolds are not unique, but the distance between a pair of slow manifolds of
the same type is of order O(exp(− c

ε )) for some c > 0 [31]. Slow manifolds can
be extended in forward and backward time by the flow; however, their behavior
is not controlled by the singular limits (2) and (4). In particular, one can extend
slow manifolds close to folded singularities, where Fenichel theory does not apply
and slow manifolds are no longer approximations of the corresponding sheets of
the critical manifold; attracting and repelling slow manifolds may exhibit complex
oscillations in a neighborhood of a folded node and start interacting. In this paper,
the slow manifolds are two-dimensional surfaces that intersect in canard orbits,
which remain on Sr

ε for an O(1) time, in contrast to most trajectories of (1), which
jump at folds along fast fibers.

Canard orbits in R3 have been classified and analyzed in [2, 4, 52, 54] by using
Geometric Singular Perturbation Theory and blow-up techniques. Generically, for
a folded node q, one has an inequality of the form λs := |λ1| > λw := |λ2| for its
eigenvalues. The corresponding eigendirections γ̃s and γ̃w are referred to as the
strong and weak singular canards, respectively. The ratio λw/λs < 1 between the
weak and the strong eigenvalues of q determines the number of secondary (maximal)
canard orbits that arise as additional transverse intersections between Sa

ε and Sr
ε

for 0 < ε� 1; see [52, 54].

3. Numerical setup. We now describe the numerical techniques we use for the
computation of slow manifolds via the continuation of solutions to a 2PBVP imple-
mented in AUTO [10], as well as the numerical setup for the detection of canard
orbits with Lin’s method. For further background information we refer the inter-
ested reader to, for example, [8, 9, 36, 38, 46].

Throughout, instead of a slow-fast system of the form (1), we consider its equiv-
alent version (3) written in the fast time scale, which contains the ratio of time
scales ε as part of the right-hand side of the equation. As is standard in AUTO, we
rescale time and write system (3) in the form

u̇ = TF (u, λ); (9)

where u = (x, y, z) ∈ R3, the function F : R3 × Rk → R3 corresponds to the right-
hand side of system (3), and λ ∈ Rk is a vector of parameters. Here, any orbit
segment is parameterized over the unit interval [0, 1] and T is the actual integration
time, which is considered as a separate parameter. We assume that system (1) and
its rescaled version (9) has a folded node at the point p0 ∈ R3 for λ = λ0, so that we
can calculate the eigenvalue ratio to know beforehand the number of canard orbits
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that are expected to exist. The goal is to find intersections between Sa
ε and Sr

ε

by looking at their corresponding intersection curves with a cross-section Σ that is
transverse to the critical manifold S. Since Sa

ε and Sr
ε are expected to spiral and

interact near the folded node p0, we stipulate that p0 ∈ Σ and write Σ as

Σ = p0 + YΣ, (10)

where YΣ is a two-dimensional subspace of R3 that is normal to the fold curve
containing p0. We consider the intersection sets

Ŝa
ε := Sa

ε ∩ Σ

and
Ŝr
ε := Sr

ε ∩ Σ.

To obtain Ŝa
ε and Ŝr

ε we need to compute the slow manifolds up to Σ and track their
intersection sets. In this setup, the relevant part of the attracting slow manifold Sa

ε

is a family of orbit segments that are solutions to the 2PBVP u̇a(t) = TaF (ua(t), λ),
ua(0) ∈ La ⊂ Sa,
ua(1) ∈ Σ,

(11)

where the line La lies on the attracting sheet Sa of S, parallel to and sufficiently
far away from the fold curve F , that is, La is transverse to the flow. Solutions
of (11) provide an accurate approximation of Sa

ε , since Fenichel theory [15, 16,
31, 41] ensures, for ε > 0 small enough, the existence of slow manifolds as O(ε)
perturbations of the corresponding sheets of the critical manifold away from fold

curves. The end point ua(1) of a solution of (11) lies on the intersection curve Ŝa
ε ,

which is the diffeomorphic image of La under the flow. We need to find a ‘good’
initial orbit segment that satisfies the 2PBVP (11), which is to be continued along

La to compute Sa
ε and Ŝa

ε . We follow [8, 9] and compute an initial orbit in two
homotopy steps, which we explain briefly here. Starting from the folded node p0,
that is, from the trivial solution ua ≡ p0 for Ta = 0, we keep the condition ua(1) ∈ Σ
throughout but allow ua(0) to move along the fold curve F while Ta varies. When
it is far enough from p0, we allow ua(0) to move on the attracting sheet Sa away
from F until the chosen line La is reached.

Similarly, the 2PBVP  u̇r(t) = TrF (ur(t), λ),
ur(1) ∈ Lr ⊂ Sr,
ur(0) ∈ Σ,

(12)

has as its solutions a family orbit segments that approximate Sr
ε , where the line Lr

lies on the repelling sheet Sr of S away from F and is transverse to the flow; the

end points ur(0) describe the intersection curve Ŝr
ε , which is now the diffeomorphic

image of Lr under the backward-time flow; see [7, 8, 9, 36] for further details on
the computation of slow manifolds.

Having initial solutions to the 2PBVPs (11) and (12), we can set up Lin’s method

to find intersections between Ŝa
ε and Ŝr

ε on Σ and, therefore, intersections between
Sa
ε and Sr

ε . The main idea of Lin’s method is that one couples the 2PBVPs (11)
and (12) to construct a new 2PBVP that has as its solution two orbit segments,
one from La to Σ and the other from Σ to Lr. The difference between their two
end points in Σ is chosen in a codimension-one subspace, called the Lin space Z;
this gives rise to a well-defined test function, called the Lin gap η. A zero of the
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Lin gap η corresponds to a canard orbit. In other words, a canard orbit can be
thought of as a connection from La to Lr, which is found as a concatenation of an
orbit segment from La to Σ and another orbit segment from Σ to Lr.

To get started, we choose initial orbit segments ua and ur on Sa
ε and Sr

ε that are
solutions of (11) and (12), respectively, and consider their corresponding end points
pa := ua(1) and pr := ur(0) in Σ. We then use pa and pr to define the unit vector

vZ :=
pa − pr
‖pa − pr‖

∈ Σ,

as well as its normal unit vector nZ ∈ Σ, with nZ ⊥ vZ . The vector vZ spans the
Lin space, that is,

Z := span{vZ}.
Note that there are many ways to define Z, given by different choices for pa and
pr. The genericity condition for the Lin space Z requires that Z is transverse to

the intersection curves Ŝa
ε and Ŝr

ε , which are unknown at the beginning of the

calculation. However, Z will generically be transverse to both Ŝa
ε and Ŝr

ε . Once
it is defined, the vector vZ remains fixed during the continuation and its normal
vector nZ ∈ Σ is obtained from the equation vZ · nZ = 0.

In order to cope with the counter-rotating spirals Ŝa
ε and Ŝr

ε it is convenient to
represent vZ and nZ as follows. One can always find an orthonormal basis on the
subspace YΣ that defines Σ in (10), so that

vZ :=

[
cos(2πα)
sin(2πα)

]
and nZ :=

[
− sin(2πα)

cos(2πα)

]
(13)

in that basis. Here, the single parameter α ∈ [0, 1] parameterizes vZ and nZ , and
it is initialized by the choices of pa and pr; fixing vZ and nZ means fixing α. We
stress that, for the detection of a single canard orbit with Lin’s method, the vectors
vZ , nZ and the parameter α remain fixed during the continuation.

We now look for solutions to the coupled problems (11) and (12) with the addi-
tional boundary conditions

(ua(1)− ur(0)) · nZ = 0, (14)

vZ · (ua(1)− ur(0)) = η. (15)

The boundary condition (14) ensures that the end points ua(1) and ur(0) lie along
the Lin space Z during the continuation of the overall 2PBVP, and (15) defines the
signed Lin gap η. The 2PBVP (11), (12), (14) and (15) is well defined and the
test function η depends on a single internal parameter, which can be thought of as
identifying the end point ua(0) ∈ La or, alternatively, ur(1) ∈ Lr. Here, Ta, Tr
and η are free parameters that vary as the end points of the corresponding orbit
segments move along La and Lr. Again, once chosen, the vectors vZ and nZ remain
fixed during the continuation of (11), (12), (14) and (15). Continuing this 2PBVP
and monitoring η allows us to detect a canard orbit automatically as η = 0.

Figure 1 shows the setup of our implementation of Lin’s method for detecting
canard orbits in system (16) that we present in the next section. Panel (a1) shows
Sa
ε (red surface) and Sr

ε (blue surface) up to Σ from the line segments La (red) and
Lr (blue), respectively. The initial orbit segments ua and ur that define pa and pr
and, hence, the Lin space Z, are shown as the highlighted red and blue trajectories,
respectively; the Lin space Z is the dark-gray vertical line in Σ (green plane). Note

that the curves Ŝa
ε and Ŝa

ε intersect on both sides of Z in Σ. Panel (a2) shows
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(a1)
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Lr

Σ
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ε
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ε
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Ŝr
ε

Ŝa
ε
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(b1)

La

Lr

Σ
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ε
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ε

Ŝr
ε

Ŝa
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Z

ξ1
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Σ

Z
Ŝr
ε

Ŝa
ε

pa
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η

(b2)

Σ

Z
Ŝr
ε

Ŝa
ε

ξ1

Figure 1. Lin’s method setup for finding canard orbits in sys-
tem (16) with µ = 8.5. Panel (a1) shows Sa

ε (red surface) and
Sr
ε (blue surface) computed from La and Lr, respectively, up to

Σ. The initial orbit segments ua (red curve) and ur (blue curve)
are each other’s symmetric counterparts and define the Lin space
Z = span{(0, 0, 1)} (dark-gray line) that defines the Lin gap η.
Panel (b1) shows the situation when the Lin gap is closed and the
canard orbit ξ1 (orange) is detected. The relevant objects in Σ are
shown in panels (a2) and (b2), respectively.

the intersection curves Ŝa
ε (red) and Ŝr

ε (blue) in Σ together with Z, as defined by
pa and pr, and the Lin gap η. Panels (b1) and (b2) show what we would like to
achieve: the same objects when η = 0 and the canard orbit ξ1 (orange) is detected;

here Z is shown in orange through ξ1 and the orange orbits on Ŝa
ε and Ŝr

ε connect
as ξ1 from La to Lr.



152 JOSÉ MUJICA, BERND KRAUSKOPF AND HINKE M. OSINGA

Overall, we want to find all of the zeros of the Lin gap, and hence, the canard

orbits as the intersections of Ŝa
ε and Ŝr

ε in Σ. The intersection curves Ŝa
ε and Ŝr

ε ,
as well as the slow manifolds Sa

ε and Sr
ε , are computed as part of the process.

4. Systematic detection of canard orbits in a normal form of a folded
node. As an illustrative example, we consider the normal form vector field for a
folded node, introduced by Wechselberger [54], which is given by ẋ = 1

2µy − (µ+ 1)z,
ẏ = 1,
ż = x+ z2.

(16)

Here, the variable z is fast, x and y are the slow variables, and the parameter µ ∈ R
is such that µ−1 corresponds to the eigenvalue ratio of the folded node singularity
of the reduced flow. The normal form (16) does not have the ratio of time scales
ε as part of the equations, because it has been obtained via ε-dependent blow-up
and rescaling. The remainder terms are O(

√
ε); see [54] for details. In spite of

the absence of ε in system (16) and in order to be consistent with the standard
notation, we denote the attracting and repelling slow manifolds by Sa

ε and Sr
ε and

their intersection sets in Σ by Ŝa
ε and Ŝr

ε , respectively.
One advantage of using system (16) is that it has an easy representation of the

folded node and the relevant objects that are necessary for the slow-fast analysis.
The critical manifold of (16) is

S := {(x, y, z) ∈ R3 : x+ z2 = 0},

which has the attracting sheet

Sa := S ∩ {z < 0},

and the repelling sheet

Sr := S ∩ {z > 0}.
They meet at the fold curve F , which is the y-axis and contains the folded node at
the origin. We choose the section as the (x, z)-plane

Σ := {y = 0},

which is transverse to the flow and contains the folded node. System (16) possesses
the time-reversal symmetry

(x, y, z, t)→ (x,−y,−z,−t),

which implies that Sa
ε and Sr

ε are related by this symmetry; this means that one can

obtain Ŝr
ε by reflecting Ŝa

ε with respect to the x-axis in Σ. Hence, the intersection

points between Ŝa
ε and Ŝr

ε in Σ, that is, the canard orbits, occur exactly when Ŝa
ε

and/or Ŝr
ε cross the line z = 0 in Σ. The geometry of the slow manifolds in (16)

and how it depends on the eigenvalue ratio µ was studied in [7], which showed how
canard orbits organize the number of small-amplitude oscillations near the folded
node. Slow manifolds were computed with a 2PBVP and the symmetry was used
to detect canard orbits, for different values of µ, as zeros of the z-coordinates of

points on Ŝa
ε .

We now demonstrate how our Lin’s method approach is able to detect canard

orbits in (16) without monitoring the z-coordinate along Ŝa
ε and/or Ŝr

ε . Throughout
this section we consider system (16) with µ = 8.5, which implies the existence of
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Figure 2. Illustration of the Lin’s method approach to detect ca-
nard orbits for (16) with µ = 8.5 in the section Σ, which is the

(x, z)-plane. Shown are the intersection sets Ŝa
ε (red curve) and

Ŝr
ε (blue curve), together with the Lin space Z (vertical dark-gray

line). Panels (a1) and (a2) show the detection of the canard orbit
ξ0 (cyan), and panels (b1) and (b2) show the detection of ξ1 (or-
ange).

five canard orbits (two primary and b(µ− 1)/2c = 3 secondary canard orbits) [54].
We define

La := Sa ∩ {x = −3}
and

Lr := Sr ∩ {x = −3}.
Due to the symmetry of system (16), it is natural to choose the initial orbit segments
ua and ur defining pa and pr, respectively, as symmetric counterparts. This means
that Z is the vertical direction of the (x, z)-plane Σ.

Figure 2 illustrates the continuation runs to find the first two canard orbits ξ0 in
row (a) and ξ1 in row (b), respectively, which are located on either side of the initial
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choice of Z (thick dark gray line). Shown are the intersection sets Ŝa
ε and Ŝr

ε in Σ
and the points pa and pr defining Z. The light-gray vertical lines are translations

of Z at selected points on Ŝa
ε (and Ŝr

ε ) during the computation, so that we can
appreciate how the Lin gap η is changing; the arrows indicate the direction of the

end points ua(1) and ur(0) along Ŝa
ε and Ŝr

ε during the respective continuation
run. Figure 2(a1) shows the first continuation run, when the corresponding end

points tracing out Ŝa
ε and Ŝr

ε initially move to the right. Here, we monitor η and
detect the canard orbit ξ0 when η = 0. Panel (a2) illustrates that the end points

ua(1) and ur(0) continue past a simultaneous tangency of Z with both Ŝa
ε and

Ŝr
ε at points denoted pta and ptr, respectively. While the computation continues, no

further canard orbits exist past the double tangency. Figure 2(b1) shows the second
continuation run, when ua(1) and ur(1) initially move from pa and pr to the left.

The Lin section Z becomes again tangent to both Ŝa
ε and Ŝr

ε simultaneously, at

points also denoted pta and ptr. Panel (b2) shows that the end points on Ŝa
ε and Ŝr

ε

are continued past the double tangency. Monitoring η, as in each continuation run,
results in the detection of the canard orbit ξ1 when η = 0. Note that panels (b1)
and (b2) are part of the same continuation run, which continues past further double
tangencies and results in the detection of all the subsequent canard orbits ξ2–ξ4.
In between any two consecutive canard orbits, that is, zeros of η, the normal form

(16) has a double tangency of Z with both Ŝa
ε and Ŝr

ε .
Figure 3 represents a three-dimensional view of the result of the two continuation

runs. Shown are the critical manifold S with the fold curve F , the slow manifolds
Sa
ε and Sr

ε computed from the line segments La ⊂ Sa and Lr ⊂ Sr up to Σ, the

intersection curves Ŝa
ε and Ŝr

ε and the canard orbits ξ0–ξ4. Note that ξ1–ξ3 lie
between ξ0 and ξ4 on Sa

ε and Sr
ε , which correspond to the so-called strong and weak

maximal canards, respectively. Furthermore, from ξ0 to ξ3 the number of twists of
the canard orbits around ξ4 increases, as predicted by the theory [52, 54]. Note that
for part of Sr

ε and Sr
ε and the respective canard orbits shown in Fig. 3, the flow

on La and Lr initially points away from the fold curve F . However, this does not
affect their crossing through Σ and the detection of the canards with our approach.

5. Lin space in general position. The choice of Z as orthogonal to the symmetry
axis is natural, but nongeneric. This makes the detection of canard orbits in Fig. 2
quite special. Figure 4 shows the setup of Lin’s method for a different, more typical
Lin space Z, which comes from a different choice of the points pa and pr. Panel (a1)
shows the first continuation run, when ua(1) and ur(0) move initially to the right.

The Lin section Z becomes tangent to Ŝa
ε at the point pta before the canard orbit

ξ0 is detected. Panel (a2) shows that the continuation goes on and ua(1) keeps

tracing Ŝa
ε further, but ur(0) turns around and goes back over the same part of Ŝr

ε .
Even though the tangency point pta is extremely close to the canard orbit ξ0, it is
not possible to detect ξ0 by Lin’s method for this choice of Z. Similarly, row (b) of

Fig. 4 illustrates the second continuation run; this time the end points on Ŝa
ε and

Ŝr
ε move initially to the left. Panel (b1) shows a tangency of Z with Ŝa

ε at the point

pta, and panel (b2) shows that ua(1) continues along Ŝa
ε , while ur(0) goes back along

Ŝr
ε as in row (a), so no canard orbits are found for this choice of Z.

Overall, we conclude that a single tangency of the fixed Lin section Z with one

of the curves Ŝa
ε or Ŝr

ε poses a problem for the detection of canards orbits. The
curve that has the tangency is traced past the fold, as was shown. However, as
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Ŝr
ε

La

Lr

ξ0

ξ1
ξ2

ξ3
ξ4

x
y

z

Figure 3. Three-dimensional view of the slow manifolds Sa
ε and

Sr
ε , and all canard orbits ξ0–ξ4 of the normal form (16) for µ = 8.5.

a result, the continuation of the other curve also enforces a ‘fold’, meaning that
the curve is traced back along the part that was already computed. Because of
this, the next canard orbit cannot be found. This artificial turn-around is a result
of the coupling between the two intersection curves by the boundary condition
(14). This also explains why our approach works well when a double fold occurs;

a double tangency of Z with both Ŝa
ε and Ŝr

ε does not have this issue and both
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Figure 4. Illustration of the Lin’s method approach for (16) with
µ = 8.5 and a Lin space Z in general position. Panel (a1) shows

when Z becomes tangent to Ŝa
ε as the end points tracing Ŝa

ε and

Ŝr
ε move to the right, and panel (a2) shows that it is not possible

to detect a canard orbit by keeping Z fixed. Panels (b1) and (b2)

show a similar situation when the end points tracing Ŝa
ε and Ŝr

ε

move to the left.

curves are continued correctly past the double fold. Since there is an alternation

of canard orbits and (double) tangencies due to the counter-rotating spiral of Ŝa
ε

and Ŝr
ε , a general algorithm will need to deal with the issue of single tangencies.

The underlying idea behind our approach for finding the next and, hence, all of the
canard orbits, is to move the Lin direction Z in such a way that the nearby double
tangency is found. This is achieved by continuing the detected single tangency while
varying Z until the second tangency is also detected. Once the double tangency
has been found, Z is again fixed and we resume the computation of finding the next
canard orbit. This intermediate step of adjusting Z may seem overly complicated
compared to, for example, re-adjusting boundary conditions in a different way.
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However, its strength lies in the fact that Z is adjusted only when necessary and
fully automatically as part of a single overall computation, without prior knowledge
of the geometry of the intersection curves or input from the user.

6. Detecting a double tangency and overall method. Instead of defining a

fixed Lin section Z that will become tangent to both Ŝa
ε and Ŝr

ε simultaneously,
which is generally impossible, one can first detect a single tangency of Z with either

Ŝa
ε or Ŝr

ε , which is generic. To this end, we introduce the projections

βa = nZ · ua(1), (17)

and
βr = nZ · ur(0), (18)

of the end points ua(1) and ur(0) in Σ onto nZ , respectively. Specifically, the
boundary conditions (17) and (18) introduce the parameters βa and βr that repre-
sent these projections.

We continue the overall 2PBVP (11), (12), (14) and (15) with the additional
boundary conditions (17) and (18), where vZ and nZ are parameterized by α as
defined in (13); the parameter α is fixed, while Ta, Tr, η, βa and βr are free con-
tinuation parameters. We monitor βa and βr and detect their folds; namely, a fold

of βa or βr indicates that Z has become tangent to Ŝa
ε or Ŝr

ε , respectively, since
it corresponds to an extremum of the projection on nZ . AUTO is able to detect
such a fold as a limit point; once it is detected, the fold can be continued. To this
end, α in (13) becomes an extra free parameter. Hence, the Lin direction Z rotates
while the fold (tangency) that was found is also continued, that is, its existence is
preserved. A second fold of βr or βa, respectively, can be detected at, say α = α∗.
This new fold then corresponds to a simultaneous double fold, where Z is tangent

to both Ŝa
ε and Ŝr

ε . We then fix Z by setting α = α∗ and resume the detection of
canard orbits as zeros of the Lin gap η for this adjusted Lin space.

Our general approach for the systematic detection of all the canard orbits via
Lin’s method, therefore, consists of the following steps:

(I) Initialization. Define a Lin space Z, that is, define vectors vZ and nZ , by
computing pa and pr.

(II) Main continuation. Continue the overall 2PBVP (11), (12), (14) and (15),
with the extra boundary conditions (17) and (18) for fixed α, with Ta, Tr, η,
βa and βr as continuation parameters, while detecting canard orbits as η = 0
and monitoring for fold points in βa and βr.

(III) Intermediate step. If a fold of βa, that is, a tangency of Z with Ŝa
ε , is detected,

continue this fold with α as a continuation parameter until a fold point of βr
is detected for α = α∗; and similarly for a first fold of βr. Then fix α = α∗

and return to step (II).

We briefly mention a few technical implementation issues. First of all, when one
activates the fold detection in AUTO, the continuation routines possibly detect folds
with respect to different parameters. Therefore, it is necessary to be particularly
careful to ensure that detected folds indeed concern either βa or βr. Secondly, at the
moment of detecting the double tangency, one needs to take care that the end points

ua(1) and ur(0) on Ŝa
ε and Ŝr

ε are continued in the correct direction when resuming
step (II). This can be ensured by continuing ua(1) and ur(0) ever so slightly past
the double tangency, meaning that the detection of canard orbits with the Lin space
given by α = α∗ is not started right at the tangency points.
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We now show that this overall implementation works for a practical example.

7. Systematic detection of canard orbits in the Koper model. We consider
the idealized model of a chemical reaction introduced by Koper [34, 35]: ε1ẋ = ky − x3 + 3x− λ,

ẏ = x− 2y + z,
ż = ε2(y − z),

(19)

where x, y and z are real numbers representing chemical concentrations. System
(19) was analyzed by Koper to study complex oscillations of chemical systems, where
the mixed-mode oscillations are related to the presence of a Shilnikov homoclinic
bifurcation [42]. This system has very rich dynamics and different sources for small-
amplitude oscillations, such as folded nodes and singular Hopf bifurcations [3, 9, 20].
We use (19) here as a more typical test-case example of a three-dimensional slow-fast
system with two slow variables. To this end, we set

λ = 7, k = −10, ε2 = 1 and ε1 = 0.01, (20)

so that x is fast and y and z are slow.
The critical manifold of (19) is

S := {ky − x3 + 3x− λ = 0},
which is a cubic surface that has two attracting sheets

Sa,+ := S ∩ {1 < x}
and

Sa,− := S ∩ {x < −1},
and one repelling sheet

Sr := S ∩ {−1 < x < 1}.
The attracting sheets Sa,+ and Sa,− meet Sr at the fold curves F+ and F−, re-
spectively, given by

F+ := S ∩ {x = 1} and F− := S ∩ {x = −1}.
System (19) with the parameters given by (20) has a folded node at the point

p0 = (−1,−0.9,−0.8),

that lies on the fold curve F−, where Sa,−
ε interacts with Sr

ε . Therefore, we look for
canard orbits that arise from the intersections between these two slow manifolds.
To simplify the notation, from now on we denote Sa,− simply by Sa and F− by F .
As usual, in order to implement the coupled 2PBVP (11), (12), (14) and (15), we
consider the section

Σ ⊂ {z = −0.8},
which contains the folded node p0 and is transverse to both the flow and the critical
manifold, together with the lines

La := Sa ∩ {x = −1.5}
and

Lr := Sr ∩ {x = −0.2}.
In the same way as for the general setup described in section 3, we use homotopy
steps for finding initial orbits on Sa

ε and Sr
ε that define the points pa and pr in Σ

and the Lin space Z. The situation here is generic in the sense that there is no
symmetry as for the normal form of a folded node singularity. Figure 5 shows a



A LIN’S METHOD APPROACH FOR DETECTING CANARD ORBITS 159

Sa

Sr

Sa
ε

Sr
ε

Σ

F

Figure 5. Three-dimensional view of the slow manifolds com-
puted up to section Σ ⊂ {z = −0.8} of the Koper model (19)
for the parameters values given by (20).

three-dimensional view of the parts of Sa
ε and Sr

ε computed up to Σ. Here La and
Lr are not shown, since they are too far from F , outside the frame of the figure,
which focuses on the spiraling of Sa

ε and Sr
ε near F .

The inverse of the eigenvalue ratio λw/λs for p0 is approximately 10.6. Hence,
there exist six canard orbits, ξ0, . . . , ξ5 (two primary and b(10.6 − 1)/2c = 4
secondary canard orbits) [54]. Figure 6 shows the continuation runs for the detection
of the canard orbits ξ0, ξ1 and ξ2, in the same layout as in Fig. 2. Panel (a1) shows
the first continuation run. Here, the points p0

a and p0
r in Σ define the Lin space Z0

for α = α0, and the corresponding end points tracing out Ŝa
ε and Ŝr

ε move initially
to the right. The canard orbit ξ0 (cyan dot) is detected when η = 0. Then the
continuation detects a fold in βa, meaning that the Lin section Z0 becomes tangent

to Ŝa
ε at the point pta; the intermediate step (III) from section 6 changes the Lin

section so that the computation can continue (not shown), but there are no further
canard orbits past this point. Figure 6(a2) illustrates the second continuation run,
when ua(1) and ur(0) move initially to the left. Here, a fold in βr is detected, where

the Lin space Z0 is tangent to Ŝr
ε at the point ptr. This single tangency is very close

to the double tangency, yet we know from section 5 that the continuation cannot
go past it to find the next canard orbit. The intermediate step (III) detects the
double tangency as a fold also on βa for α = α1 near α0; the points p1

a and p1
r of

double tangency of the Lin space with Ŝa
ε and Ŝr

ε , respectively, define the new Lin
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Ŝr
ε

p0a

p0r

ξ0
pta

(a2)

Z0

Ŝa
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Figure 6. Illustration of the Lin’s method approach to detect ca-
nard orbits of (19) with parameter values as (20) in section Σ,

represented by the (x, y)-plane. Shown are the intersection sets Ŝa
ε

(red curve) and Ŝr
ε (blue curve), together with the corresponding

Lin space (dark-gray line). Panel (a1) shows the detection of the
canard orbit ξ0 (cyan) and panel (a2) shows a tangency of the Lin

space Z0 with Ŝr
ε . Panels (b1) and (b2) show the detection of ξ1

(orange) and ξ2 (green), respectively.

space Z1 for α = α1. Figure 6(b1) shows the next part of the computation, that is,
the return to step (II) with the Lin space Z1. The end points ua(1) and ur(0) now
move to the right, past p1

a and p1
r, and the canard orbit ξ1 (orange dot) is detected

when η = 0; note that ξ1 is very close to the double tangency of Z1 with Ŝa
ε and

Ŝr
ε . The continuation then detects a fold in βa, that is, the point pta of tangency of

Z1 with Ŝa
ε . Applying the intermediate step (III) again, the double tangency points

p2
a and p2

r are detected, which define the Lin space Z2 for α = α2. Figure 6(b2)
shows the continuation run with the subsequent detection of the canard orbit ξ2
(green dot), up to the moment when Z2 becomes tangent to Ŝa

ε at the point pta; the
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Figure 7. Intermediate step (III) for the detection of a simulta-

neous tangency of the Lin space with Ŝa
ε and Ŝr

ε , for the Koper
model (19) with parameters as in (20). Panel (a1) shows the de-
tection of the points defining the Lin space Z1 and panel (a2) shows
the corresponding fold of βa. Panels (b1) and (b2) show step (III)
for the detection of the points defining the Lin space Z2.

process continues with steps (II) and (III) until all other canard orbits ξ3–ξ5 are
also detected.

As illustrated, finding a double tangency of the Lin section with Ŝa
ε and Ŝr

ε

through the intermediate step (III) is the key for our systematic detection of ca-
nard orbits. Figure 7 illustrates in rows (a) and (b) the continuation runs of the
intermediate step (III) for finding the updated Lin spaces Z1 and Z2, respectively.

Panel (a1) shows an enlargement near the double tangency of Z1 with Ŝa
ε and Ŝr

ε .
The continuation run starts with the Lin space Z0 (gray line) through the point

ua(1) ∈ Ŝa
ε and the first detected tangency point ur(0) = ptr ∈ Ŝr

ε , which is the
situation just after step (II). Since we are continuing a fold in βr, the intermediate

end points uia(1) and uir(0) move along Ŝa
ε and Ŝr

ε , respectively, in such way that the
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Figure 8. Slow manifolds and the canard orbits ξ0–ξ5 of the Koper
model (19) for the parameter values (20).

line through them, that is, the moving Lin space (light-gray line), is always tangent

to Ŝr
ε . The continuation then detects a fold in βa as well, that is, the two points

p1
a ∈ Ŝa

ε and p1
r ∈ Ŝr

ε of double tangency that define the Lin space Z1 (dark-gray
line). Figure 7(a2) shows the fold in βa during step (III), which is best observed
when it is plotted against the (AUTO) L2-norm ‖ · ‖2 of the corresponding orbit
segment. Similarly, Fig. 7(b1) shows an enlargement near the double tangency of

the Lin space Z2 with Ŝa
ε and Ŝr

ε , and illustrates step (III) for finding and updating
Z2 when starting from Z1. Notice that the angle between the Lin sections Z1 and Z2

is now much larger, so that it is easier to see the process. The fold of βr, again best
observed when plotted against the (AUTO) L2-norm ‖ · ‖2, is shown in Fig. 7(b2).

Figure 8 shows a three-dimensional view of Sa
ε and Sr

ε together with the section
Σ and all canard orbits ξ0–ξ5, which were detected systematically as just described.
Note the spiraling of the slow manifolds and the different numbers of small oscilla-
tions performed by ξ0–ξ4 around ξ5; here, ξ0 and ξ5 are again the so-called strong
and weak maximal canards, respectively. The situation is qualitatively the same as
for the normal form in Fig. 3, as one would expect, but without exact symmetry
between Sa

ε and Sr
ε . Importantly, ξ0–ξ5 are nevertheless found systematically via

the alternation of steps (II) and (III).

8. Discussion. We presented a Lin’s method approach for the detection of all
the canard orbits arising from a folded node in slow-fast systems in R3 with two
slow and one fast variables, based on the continuation of solutions to a suitable
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2PBVP. We showed a new context where the underlying idea of Lin’s method is
utilized to achieve an efficient and accurate numerical implementation. It employs
two independent well-posed 2PBVPs that are coupled through additional boundary
conditions.

Our overall implementation allows for the systematic detection of all of the ca-
nard orbits arising as intersection points of an attracting and a repelling slow man-
ifold in a two-dimensional section Σ that contains a folded node. It has the novel
feature that the Lin space is updated in an suitable way during an intermediate
continuation step, which overcomes a geometric obstruction that arises due to the
counter-rotating nature of slow manifolds near a folded node. The spiraling nature
of the slow manifolds is reflected by their intersection curves in Σ. Our method uses
the geometry of these intersection curves, in particular the alternation between their
intersection points and tangencies with the Lin space. Specifically, we vary the Lin
space until we detect double tangencies with both slow manifolds, and then fix the
Lin space again. This approach has been demonstrated for the automatic detection
and computation of canards in the Koper model.

Once a canard orbit is detected, it is natural to continue it in system parameters
to study how the interaction between the attracting and repelling slow manifolds
changes. This is particularly useful, for example, to identify the creation or destruc-
tion of regimes with different numbers of small-amplitude oscillations. To this end,
one can fix the Lin gap at η = 0 in the overall 2PBVP, as was done in [45]. This
has the advantage that one can still keep track of the intersection of the canard or-
bits with the section Σ. Alternatively, one can concatenate the two orbit segments
that form the canard orbit, so that it becomes a single orbit segment that is then
continued in parameters.

The overall 2PBVP implementation of Lin’s method presented in this paper may
also be useful for the detection of connecting orbits in a broader context, especially
when the intersection curves of the manifolds of interest generate folds with any Lin
space, for example, due to their spiraling.
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